Skip to main content

Kelly Rice

Associate Professor

  • Teaching Interests
    • MCB 4203 - Bacterial and Viral Pathogens
    • MCB 4034L - Advanced Microbiology Lab
    • Undergraduate Research
  • Education
    • Ph.D. (2001) University of Toronto, Toronto, ON, Canada.
    • Post-doctoral training (2001-2005) University of Idaho, Moscow, ID
    • Instructor (2005-2008) University of Nebraska Medical Center, Omaha, NE
  • Description of Research

    My research program focuses on aspects of bacterial physiology and cell communication that contribute to biofilm development of pathogenic Gram-positive bacteria. Specific research projects currently under investigation include:

    1. Determining the contributions of endogenous nitric oxide (NO) to biofilm, physiology and cell-signaling in Staphylococcus aureus. NO is a free-radical gas that has been well-characterized as a signaling molecule in eukaryotes, and more recently, a role for this versatile molecule in regulating bacterial physiology and biofilm development has also been recognized. Our research is focused on dissecting the pathways of endogenous NO production and consumption in Staphylococcus aureus (MSSA and MRSA), a notorious pathogen that causes a wide variety of serious infections in mammals. This work also seeks to identify the upstream regulators and downstream cellular targets of endogenously-produced NO, and to determine how these processes relate to biofilm development.

    2. Characterizing the role and regulation of cell death in Streptococcus mutans biofilms. The cid and lrg operons encode membrane proteins that have been shown to be involved in cell death and lysis regulation in several bacteria. Our research focuses on the Cid/Lrg system of Streptococcus mutans, the primary causative agent of dental caries. There appear to be distinct differences in the organization and regulation of S. mutans cid and lrg compared to what is known in other organisms, and some of these genes affect S. mutans virulence traits such as oxidative stress resistance, competence, and biofilm formation. A better understanding of how cid and lrg specifically contribute to these virulence phenotypes may allow the development of new anti-caries strategies. This research is conducted in collaboration with Dr. Sang-Joon Ahn, Research Associate Professor, Dept. Oral Biology, UF.

    3Investigating microgravity effects on S. mutans physiology, gene expression, and biofilm development. The health of astronauts during long-term space flight is of paramount concern, as various detrimental health effects resulting from exposure to microgravity conditions have been documented. We are currently studying the responses of S. mutans and S. aureus to simulated microgravity and/or the space flight environment with respect to bacterial physiology, biofilm formation and global gene expression.

  • Publications


Contact Information


Rm. # 1147
Microbiology Building 981